On the Walsh-Hadamard transform of monotone Boolean functions

Charles Celerier, David Joyner, Caroline Melles, David Phillips
United States Naval Academy, Mathematics Department, Annapolis, MD 21402
E-mail: charles.celerier@gmail.com, wdj@usna.edu, cgg@usna.edu, dphillip@usna.edu

Abstract

Let $f: G F(2)^{n} \rightarrow G F(2)$ be a monotone Boolean function. Associated to f is the Cayley graph X whose vertices correspond to points of $G F(2)^{n}$ and whose edges correspond to pairs of vectors (v, w) whose sum is in the support of f. The spectrum of X (the set of eigenvalues of its adjacency matrix) can be computed in terms of the Walsh-Hadamard transform of f. We show that if f is atomic, the adjacency matrix of X is singular if and only if the support of f has an even number of elements. We ask whether it is true that for every even monotone function the adjacency matrix of the Cayley graph must be singular. We give an example in dimension $n=6$ to show that the answer to this question is no. We use Sage to compute some examples of monotone Boolean functions, their Cayley graphs, and the graph spectra. We include some interesting characterizations of monotone functions. We give some conditions on a monotone function that imply that the function is not bent. Finally, we ask whether it is true that no even monotone function is bent, for $n>2$.

2000 Mathematics Subject Classification. 06E30. 94C10.
Keywords. Boolean functions, Walsh-Hadamard transforms, monotone Boolean functions.

1 Introduction

Monotone Boolean functions have applications to theoretical computer science, voting theory, and many other areas. Bent functions are useful in cryptography in the construction of stream ciphers. One motivation for this paper was to characterize monotone Boolean functions in terms of properties of their Cayley graphs, analogous to the way that bent functions have been characterized (see A. Bernasconi, B. Codenotti, and J. VanderKam [BCV01]). Another motivation was to try to see if any monotone functions could also be bent. We have partial results in both of these directions in §3 below.

In this paper we give Sage code to construct Boolean functions, to compute the adjacency matrix and graph spectrum of a Boolean function, and to help visualize the Cayley graph of a Boolean function.

We show (Theorem 3.1) that the set of closures of the Hasse diagram P_{n} on $G F(2)^{n}$ is in one-to-one correspondence with the set of monotone Boolean functions on $G F(2)^{n}$.

We give a compact algebraic form for any monotone Boolean function, in terms of its vectors of least support (Theorem 3.5).

We prove (Theorem 3.6) that a monotone Boolean function supported on a single vector has a singular Cayley graph if and only if the support of the function has an even number of elements.

We describe a class of monotone Boolean functions which are not bent (Proposition 3.7).
Some calculations with Sage led to a conjecture that every monotone Boolean function whose support has an even number of elements has a singular Cayley graph. In Example 4.2, we give a
counterexample in dimension $n=6$, by constructing a homogeneous monotone Boolean function of degree 4 whose Cayley graph does not have 0 in its spectrum.

We suggest the following question: is it true that no even monotone function on $G F(2)^{n}$ is bent, for $n>2$?

We begin with notation and by recalling some background from [Sta07], [BC99].
For a given positive integer n we may identify a Boolean function

$$
f: G F(2)^{n} \rightarrow G F(2)
$$

with its support

$$
\Omega_{f}=\left\{x \in G F(2)^{n} \mid f(x)=1\right\} .
$$

For each $S \subset G F(2)^{n}$, let \bar{S} denote the set of complements $\bar{x}=x+(1, \ldots, 1) \in G F(2)^{n}$, for $x \in S$, and let $\bar{f}=f+1$ denote the complementary Boolean function. Note that

$$
\Omega_{f}^{c}=\Omega_{\bar{f}}
$$

where S^{c} denotes the complement of S in $G F(2)^{n}$. Let

$$
\omega=\omega_{f}=\left|\Omega_{f}\right|
$$

denote the cardinality of the support. We call a Boolean function even (resp., odd) if ω_{f} is even (resp., odd). If it is more convenient, a vector in $G F(2)^{n}$ may also be identified with an integer in $\left\{0,1, \ldots, 2^{n}-1\right\}$. Let

$$
b:\left\{0,1, \ldots, 2^{n}-1\right\} \rightarrow G F(2)^{n}
$$

be the binary representation ordered with least significant bit last (so that, for example, $b(1)=$ $\left.(0, \ldots, 0,1) \in G F(2)^{n}\right)$. For convenience, we index vectors starting at 0 , i.e. a vector $x \in G F(2)^{3}$ has components x_{0}, x_{1}, and x_{2}.

Let H_{n} denote the $2^{n} \times 2^{n}$ Hadamard matrix defined by $\left(H_{n}\right)_{i, j}=(-1)^{b(i) \cdot b(j)}$, for each i, j such that $0 \leq i, j \leq n-1$. (Here and below, $b(i) \cdot b(j)$ denotes the scalar product of two vectors in $G F(2)^{n}$.) Inductively, these can be defined by

$$
H_{1}=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right), \quad H_{n}=\left(\begin{array}{cc}
H_{n-1} & H_{n-1} \\
H_{n-1} & -H_{n-1}
\end{array}\right), \quad n>1 .
$$

The Walsh-Hadamard transform of f is defined to be the vector in $\mathbb{R}^{2^{n}}$ whose k th component is

$$
(\mathcal{H} f)(b(k))=\sum_{i \in\left\{0,1, \ldots, 2^{n}-1\right\}}(-1)^{b(i) \cdot b(k)+f(b(i))}=\left(H_{n}(-1)^{f}\right)_{k}
$$

where we define $(-1)^{f}$ as the column vector where the i th component is

$$
(-1)_{i}^{f}=(-1)^{f(b(i))}
$$

for $i=0, \ldots, 2^{n}-1$. We define a Boolean function $f: G F(2)^{n} \rightarrow G F(2)$ to be bent if the absolute value of each component of its Walsh-Hadamard transform is $2^{n / 2}$. Clearly, since each component of the Hadamard transform must be an integer, there are no bent functions when n is odd.

Example 1.1 (a bent, odd function). Let $f: G F(2)^{2} \rightarrow G F(2)$ be defined as $f\left(x_{1}, x_{2}\right)=x_{1} x_{2}$. Then $\Omega_{f}=\{(1,1)\}$ so $\omega=1$ and f is odd. Also, f is bent because

$$
(-1)^{f}=\left(\begin{array}{c}
1 \\
1 \\
1 \\
-1
\end{array}\right)
$$

and so

$$
\mathcal{H} f=H_{2}(-1)^{f}=\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right)\left(\begin{array}{c}
1 \\
1 \\
1 \\
-1
\end{array}\right)=\left(\begin{array}{c}
2 \\
2 \\
2 \\
-2
\end{array}\right)
$$

This example is "trivial" as $n=2$ is so small. More interesting examples are given in Celerier's paper in this volume.

Example 1.2. A Boolean function of three variables cannot be bent. Let f be defined by:

x_{1}	0	0	0	0	1	1	1	1
x_{2}	0	0	1	1	0	0	1	1
x_{3}	0	1	0	1	0	1	0	1
$(-1)^{f}$	1	-1	1	-1	1	-1	1	-1
$\mathcal{H} f$	0	8	0	0	0	0	0	0

This function is even because

$$
\Omega_{f}=\{(0,0,1),(0,1,1),(1,0,1),(1,1,1)\}, \text { so } \omega=4
$$

Example 1.3. A Boolean function of four variables:

x_{1}	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
x_{2}	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
x_{3}	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
x_{4}	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
$(-1)^{f}$	1	1	1	1	1	1	1	-1	1	1	1	-1	-1	-1	-1	-1
$\mathcal{H} f$	4	4	4	-4	8	0	0	0	8	0	0	0	-4	-4	-4	4

In this example, the function is even and $\omega=6$.
We define the support of a vector in $G F(2)^{n}$ as

$$
\operatorname{supp}(v)=\left\{i \mid v_{i}=1\right\} .
$$

For any two $x, y \in G F(2)^{n}$, let $d(x, y)$ denote the Hamming metric:

$$
\begin{equation*}
d(x, y)=\left|\left\{0 \leq i \leq n-1 \mid x_{i} \neq y_{i}\right\}\right| . \tag{1.1}
\end{equation*}
$$

We define the weight wt of x to be the number of non-zero coordinates of x, so $d(x, y)=\mathrm{wt}(x-y)$ and $\mathrm{wt}(x)=|\operatorname{supp}(x)|$.

Example 1.4. We use Sage to look at the example of

$$
f\left(x_{0}, x_{1}, x_{2}, x_{3}\right)=x_{0} x_{1} x_{2}+x_{0} x_{1} x_{3}+x_{0} x_{2} x_{3}+x_{0} x_{2}+x_{1} x_{2} x_{3}+x_{1} x_{2}+x_{2} x_{3}
$$

First, we attach the file afsr.sage available from Celerier [Cel], then run the following commands.

Sage

```
sage: from sage.crypto.boolean_function import *
sage: R.<x0, x1, x2, x3> = BooleanPolynomialRing(4)
sage: f = BooleanFunction(x0*x1*x2 + x0*x1*x3 + x0*x 2*x3 + x0*x2 + x ( x x 2*x3 + x 1*x2 + x 2*x3)
sage: g = BooleanFunction([0,0,0,0,0,1,1,1,0,0,0,1,1,1,1,1])
sage: g.is_bent()
False
sage: is_monotone(g)
True
sage: g.truth_table(format='int')
(0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1)
sage: f.truth_table(format='int')
(0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1)
sage: g.algebraic_normal_form()
x0*x1*x2 + x0*x1*x3 + x0*x 2*x3 + x0*x2 + x 1*x2*x3 + x x * x 2 + x 2*x3
sage: f.algebraic_normal_form()
x}0*\textrm{x}1*\textrm{x}2+\textrm{x}0*\textrm{x}1*\textrm{x}3+\textrm{x}0*\textrm{x}2*\textrm{x}3+\textrm{x}0*\textrm{x}2+\textrm{x}1*\textrm{x}2*\textrm{x}3+\textrm{x}1*\textrm{x}2+\textrm{x}2*\textrm{x}
```

This shows how to construct Boolean functions in Sage using the sage.crypto module. The only command from afsr.sage is the is_monotone function ${ }^{1}$. We then show that, in spite of f and g being constructed in different ways, they have the same values ("truth table") and have the same algebraic normal form ${ }^{2}$.

2 The Cayley graph

For any Boolean function $f: G F(2)^{n} \rightarrow G F(2)$, we define the Cayley graph of f to be the undirected graph $X=(V, E)$ with vertices V and edges E given by:

$$
V=G F(2)^{n}, \quad E=\{(v, w) \in V \times V \mid f(v+w)=1\} .
$$

We shall assume throughout and without further mention that

$$
f(0) \neq 1,
$$

so X has no loops and we may regard X as a simple graph. Indeed, X is an ω-regular graph having r connected components, where

$$
r=\left|G F(2)^{n} / \operatorname{Span}\left(\Omega_{f}\right)\right|
$$

For each vertex $v \in V$, the set of neighbors $N(v)$ of v is given by

$$
N(v)=v+\Omega_{f}
$$

where v is regarded as a vector and the addition is induced by the usual vector addition in $G F(2)^{n}$. Let $A=\left(A_{i j}\right)$ be the $2^{n} \times 2^{n}$ adjacency matrix of X, so

[^0]$$
A_{i j}=f(b(i)+b(j)), \quad 0 \leq i, j \leq 2^{n}-1 .
$$

The spectrum of the graph X is the multi-set of eigenvalues of the (symmetric) adjacency matrix A

$$
\begin{equation*}
\operatorname{Spectrum}(X)=\left\{\lambda_{k} \mid 0 \leq k \leq 2^{n}-1\right\} . \tag{1.2}
\end{equation*}
$$

We say that X is singular if the adjacency matrix A is singular.
Example 2.1. Here are some Sage commands to help visualize the Boolean function f of three variables in Example 1.2:

Sage

```
sage: flist = [0,1,0,1,0,1,0,1]
sage: V = GF(2) ^ 3
sage: Vlist = V.list()
sage: f = lambda x: GF(2)(flist[Vlist.index(x)])
sage: X = boolean_cayley_graph(f, 3)
sage: X.adjacency_matrix()
[0
```



```
[0}0
[1 [0
[00
[1 [10 1 0 1 1 0 1 0}
[0
[1 0
sage: X.spectrum()
sage: X.show(layout="circular")
```

The last command gives rise to the Cayley graph X of f shown in Figure 1.

Figure 1. The Cayley graph of the Boolean function of three variables from Example 1.2. (The vertices are ordered as in that example.)

The adjacency matrix A of X is given by (1.3):

$$
A=\left(\begin{array}{llllllll}
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \tag{1.3}\\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0
\end{array}\right)
$$

and the graph spectrum by

$$
\{-4,0,0,0,0,0,0,4\} .
$$

Example 2.2. For the Boolean function of four variables in Example 1.3, the Cayley graph is given in Figure 2.

Figure 2. The Cayley graph of the Boolean function of four variables from Example 1.3. (The vertices are ordered as in that example.)

The adjacency matrix A of the graph is by (1.4):

$$
A=\left(\begin{array}{llllllllllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \tag{1.4}\\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

and the graph spectrum is

$$
\{-4,-4,-2,-2,-2,0,0,0,0,0,0,2,2,2,2,6\} .
$$

These may be computed using Sage commands, as in the last example.
We wish to relate the spectrum of the Cayley graph X to the Walsh-Hadamard transform $\mathcal{H} f=H_{n}(-1)^{f}$. Recall that $(-1)^{f}$ is defined to be the column vector whose i th component is $\left((-1)^{f}\right)_{i}=(-1)^{f_{i}}$, where $f_{i}=f(b(i))$ for $i=0,1, \ldots, 2^{n}-1$. Note that f and $(-1)^{f}$ are related by the equation

$$
f=\frac{1}{2}\left(\mathbf{1}-(-1)^{f}\right),
$$

where $\mathbf{1}=(1,1, \ldots, 1)$. For $k=0,1, \ldots, 2^{n}-1$, let $w_{k} \in\{ \pm 1\}^{2^{n}}$ be the column vector whose i th component is

$$
\left(w_{k}\right)_{i}=(-1)^{b(k) \cdot b(i)}
$$

Each vector w_{k} is an eigenvector of A, since for each i,

$$
\begin{align*}
\left(A w_{k}\right)_{i} & =\sum_{j=0}^{2^{n}-1} f(b(i)+b(j))(-1)^{b(k) \cdot b(j)} \\
& =(-1)^{b(k) \cdot b(i)} \sum_{j=0}^{2^{n}-1}(-1)^{b(k) \cdot(b(i)+b(j))} f(b(i)+b(j)) \\
& =\left(w_{k}\right)_{i} \sum_{l=0}^{2^{n}-1}(-1)^{b(k) \cdot b(l)} f(b(l)) \\
& =\left(w_{k}\right)_{i} \sum_{l=0}^{2^{n}-1}\left(H_{n}\right)_{k, l} f_{l} \\
& =\left(w_{k}\right)_{i}\left(H_{n} f\right)_{k} \tag{1.5}\\
& =\left(w_{k}\right)_{i}\left(H_{n} \frac{1}{2}\left(\mathbf{1}-(-1)^{f}\right)\right)_{k} \\
& =\left(w_{k}\right)_{i} \frac{1}{2}\left(H_{n} \mathbf{1}-\mathcal{H} f\right)_{k} . \tag{1.6}
\end{align*}
$$

Then Equation (1.5) proves that w_{k} is an eigenvector of A having eigenvalue $\lambda_{k}=\left(H_{n} f\right)_{k}$, where H_{n} is the nth Hadamard matrix, and Equation (1.6) demonstrates the affine relationship $\lambda_{k}=$ $\frac{1}{2}\left(H_{n} \mathbf{1}-\mathcal{H} f\right)_{k}$ between the spectrum of X and the Walsh-Hadamard transform. Therefore, the spectrum of $X, \operatorname{Spectrum}(X)=\left\{\lambda_{k} \mid 0 \leq k \leq 2^{n}-1\right\}$, is explicitly computable as an expression in terms of f.

There is another useful expression for λ_{k}. Let Ω_{f}^{*} be the $\omega \times n$ matrix whose column vectors are the elements of Ω_{f} :

$$
\Omega_{f}^{*}=\left(y_{1} \ldots y_{\omega}\right), \quad \Omega_{f}=\left\{y_{1}, \ldots, y_{\omega}\right\} .
$$

Then, for $k \in\left\{0, \ldots, 2^{n}-1\right\}$,

$$
\begin{aligned}
\lambda_{k} & =\sum_{y \in G F(2)^{n}}(-1)^{b(k) \cdot y} f(y) \\
& =\sum_{y \in \Omega_{f}}(-1)^{b(k) \cdot y} \\
& =\sum_{y \in \Omega_{f}}(1-2(b(k) \cdot y \bmod 2)) \\
& =\omega-2 \mathrm{wt}\left(\left(b(k)^{\top} \Omega_{f}^{*}\right) \bmod 2\right)
\end{aligned}
$$

This proves the following result.
Lemma 2.3. An integer m belongs to $\operatorname{Spectrum}(X)$ if and only if there is an $x \in G F(2)^{n}$ such that the number of $y \in \Omega_{f}$ which are not orthogonal to x in $G F(2)^{n}$ is $\frac{\omega-m}{2}$.

3 Monotone functions

Define a partial order \leq on $G F(2)^{n}$ as follows: for each $v, w \in G F(2)^{n}$, we say

$$
v \leq w
$$

whenever we have $v_{1} \leq w_{1}, v_{2} \leq w_{2}, \ldots, v_{n} \leq w_{n}$, or equivalently $\operatorname{supp}(v) \subseteq \operatorname{supp}(w)$. A Boolean function is called monotone (increasing) if whenever we have $v \leq w$ then we also have $f(v) \leq f(w)$. The Boolean functions from Examples 1.2 and 1.3 above are monotone.

Note that if f and g are monotone then (a) $f g$ is monotone, (b) $f+g+f g$ is monotone, (c) $\overline{\Omega_{f}} \cap \overline{\Omega_{g}}=\overline{\Omega_{f g}}$, and (d) all monomials are monotone.

There are some interesting characterizations of monotone functions.

- For $f: G F(2)^{n} \rightarrow G F(2)$ any Boolean function of n variables, let

$$
\begin{aligned}
& f_{0}\left(x_{1}, \ldots, x_{n-1}\right)=f\left(0, x_{1}, \ldots, x_{n-1}\right) \\
& f_{1}\left(x_{1}, \ldots, x_{n-1}\right)=f\left(1, x_{1}, \ldots, x_{n-1}\right)
\end{aligned}
$$

The function f is monotone if and only if (a) both of the subfunctions f_{0} and f_{1} are monotone and (b) $\Omega_{f_{0}} \subset \Omega_{f_{1}}$.

- For a given positive integer n and our partial ordering, the Hasse diagram, P_{n}, is the directed graph with a vertex for each vector in $G F(2)^{n}$ and for which (v, w) is an edge if $v \leq w$ and $w t(w)=w t(v)+1$ (see Example 3.4). We define a closure of a directed graph $G=(V, E)$ to be a set of nodes without any outgoing edges, i.e., a set of nodes, $C \subseteq G$, with the property that if $i \in C$ and $(i, j) \in E$, then $j \in C$. We can then count the number of monotone functions on n variables by counting the number of closures on P_{n}. Closures on directed graphs have several applications, e.g., in defense [Or187], mining [Joh68, HC00, BZ10], and shipping [Rhy70].

Theorem 3.1. For all positive integers n, the set of closures on P_{n} is in one-to-one correspondence with the set of monotone functions on $G F(2)^{n}$.

Proof. Let n be a given positive integer and consider the set of monotone functions on $G F(2)^{n}$. We claim that the relation mapping Boolean functions on $G F(2)^{n}$ to their support defines a one-to-one correspondence from monotone functions to closures on P_{n}. For a given Boolean function f on $G F(2)^{n}$, the relation is simply Ω_{f} and we therefore denote the relation with Ω. Note that Ω is a function from Boolean functions to subsets of $G F(2)^{n}$, i.e., subsets of vertices in P_{n}. For a monotone Boolean function f on $G F(2)^{n}$, we claim that Ω_{f} is a closure on P_{n}. For given vertices $v, w \in G F(2)^{n}$, suppose that $v \in \Omega_{f}$ and that (v, w) is an edge in P_{n}. Then, $w_{i}=v_{i}+1$ for exactly one $i \in\left\{0, \ldots, 2^{n}-1\right\}$ and $w_{j}=v_{j}$ for all $j \in\left\{0, \ldots, 2^{n}-1\right\} \backslash\{i\}$, i.e., $v<w$. Then, because $v \in \Omega_{f}$ and f is monotone, $1=f(v) \leq f(w)$ so $w \in \Omega_{f}$. Thus, Ω_{f} is a closure in P_{n}.
To see that Ω is injective, note that two Boolean functions, f and g, have $f \neq g$ if and only if $\Omega_{f} \neq \Omega_{g}$. To see that Ω is surjective, let $C \subseteq G F(2)^{n}$ be a given closure in P_{n} and define f_{C} as the function with C as a set of support vectors, i.e., for all $v \in C, f_{C}(v)=1$. By definition, $\Omega_{f_{C}}=C$. We claim that f_{C} is monotone. Let $v, w \in G F(2)^{n}$ be given where $v \leq w$ and $v \neq w$. If $f_{C}(v)=0$ then $f_{C}(v) \leq f_{C}(w)$, trivially, so assume that $f_{C}(v)=1$,
i.e., $v \in C$. Note that if $v \leq w$ and $v \neq w$ then for some positive integer k, there are k components where v has a zero and w has a one. For $i \in\left\{0, \ldots, 2^{n}-1\right\}$, let e_{i} denote the vector with one in component i and zero in all other components. Then there is a set $\left\{i_{1}, \ldots, i_{k}\right\} \subset\left\{0, \ldots, 2^{n}-1\right\}$ where $w=v+\sum_{j=1}^{k} e_{i_{j}}$. For $\ell \in\{0, \ldots, k\}$, let $u_{\ell}=v+\sum_{j=1}^{\ell} e_{i_{j}}$. By the definition of the Hasse diagram, for $\ell \in\{0, \ldots, k-1\},\left(u_{\ell}, u_{\ell+1}\right)$ are edges in P_{n}. Then, as $v=u_{0} \in C$, by the closure property, $u_{\ell} \in C$ for all $\ell \in\{0, \ldots, k\}$, so, in particular, $f_{C}(w)=f_{C}\left(u_{k}\right)=1 \geq f_{C}(v)$.

- f is monotone if and only if the set $\left\{\operatorname{supp}(v) \mid \bar{v} \in \Omega_{f}\right\}$ is an ideal ${ }^{3}$ of $\{0,1, \ldots, n-1\}$ (see, for example, Kleitman [Kle69]).

For each $v \in G F(2)^{n}$, define a monotone function $f=f_{v}$ to be atomic based on v if its support consists of all vectors greater than or equal to v, i.e., if

$$
\Omega_{f}=\left\{x \in G F(2)^{n} \mid v \leq x\right\},
$$

where \leq is the partial order defined above. We call f atomic if there is some $v \neq 0$ such that f is atomic based on v. Note that Example 1.2 is monotone and atomic based on $(0,0,1)$ while Example 1.3 is monotone but not atomic.

Definition 3.2. Let $f: G F(2)^{n} \rightarrow G F(2)$ be any monotone function. We say that $\Gamma \subset G F(2)^{n}$ is the least support of f if Γ consists of all vectors in Ω_{f} which are smallest in the partial ordering \leq on $G F(2)^{n}$.

For example, the set of vectors of least support for Example 1.3 is

$$
\Gamma=\{(0,1,1,1),(1,0,1,1),(1,1,0,0)\}
$$

A monotone function is atomic if and only if it has only one vector in its least support. Here is an interesting group-theoretical characterization of atomic monotone functions.

Proposition 3.3. Let f be a Boolean monotone function which is not a constant function. Then f has atomic support if and only if the set of complements $\overline{\Omega_{f}}$ is a subspace of $G F(2)^{n}$.

Proof. Suppose that f has atomic support based on v. Then $v \leq w$ for all $w \in \Omega_{f}$. Then $\bar{w} \leq \bar{v}$ for all $\bar{w} \in \overline{\Omega_{f}}$. If $\overline{w_{1}}$ and $\overline{w_{2}}$ are in $\overline{\Omega_{f}}$ then $\overline{w_{1}}+\overline{w_{2}} \leq \bar{v}$. Indeed, consider the i th component of \bar{v} : if it is 0 then the i th components of $\overline{w_{1}}$ and $\overline{w_{2}}$ must be 0 , and if it is 1 then it is impossible for the i th component of the sum to be any larger. Therefore $\overline{\Omega_{f}}$ is a subspace.

Conversely, suppose that $\overline{\Omega_{f}}$ is a proper subspace of $G F(2)^{n}$ and let x be any element of $\overline{\Omega_{f}}$.
Next, we claim that if $x \in \overline{\Omega_{f}}$ and if $y \leq x$, then $y \in \overline{\Omega_{f}}$. But $y \leq x$ if and only if $\bar{y} \geq \bar{x}$. Because f is monotone, $\bar{y} \in \Omega_{f}$, proving the claim.

Now let z be any element of maximal weight in $\overline{\Omega_{f}}$. Let h be the weight of z. Since f is monotone, there must be at least h weight 1 vectors in $\overline{\Omega_{f}}$, by the previous claim. Suppose there is a vector $y \in \overline{\Omega_{f}}$ such that y is not less than or equal to z. Then there must be at least $h+1$

[^1]

1111

Figure 3. Bold font means the Boolean function takes the value 1 at that point in $G F(2)^{4}$. Regular font means the function is 0 . This is another way of drawing the Hasse diagram for the four-dimensional unit hypercube, superimposed with Example 3.4.
(distinct) weight 1 vectors in $\overline{\Omega_{f}}$. Their sum must also be in $\overline{\Omega_{f}}$, so z is not a maximal weight element of $\overline{\Omega_{f}}$. Therefore $\overline{\Omega_{f}}$ consists of all elements y of $G F(2)^{n}$ such that $y \leq z$ and Ω_{f} consists of all elements w such that $w \geq \bar{z}$ (namely all the complements of those y 's). Therefore Ω_{f} is atomic based on \bar{z}.

Example 3.4. Here is an example of a monotone function $f: G F(2)^{4} \rightarrow G F(2)$ whose least support vectors are given by

$$
\Gamma=\{(1,0,0,0),(0,1,1,0),(0,1,0,1),(0,0,1,1)\} \subset G F(2)^{n}
$$

illustrated in Figure 3. The algebraic normal form of f is

$$
f\left(x_{0}, x_{1}, x_{2}, x_{3}\right)=x_{0} x_{1} x_{2}+x_{0} x_{1} x_{3}+x_{0} x_{2} x_{3}+x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}+x_{0},
$$

but it also can be written in this factored form:

$$
f\left(x_{0}, x_{1}, x_{2}, x_{3}\right)=1+\left(x_{0}+1\right)\left(x_{1} x_{2}+1\right)\left(x_{1} x_{3}+1\right)\left(x_{2} x_{3}+1\right) .
$$

Note how the factors correspond to the vectors of least support. We shall see in the next theorem below that this sort of factorization holds for all monotone functions.

This example has the property that the function $f\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$ is even (i.e., the support Ω_{f} has an even number of elements), yet the subfunctions $f\left(x_{0}, 0, x_{1}, x_{2}\right), f\left(x_{0}, x_{1}, 0, x_{2}\right), f\left(x_{0}, x_{1}, x_{2}, 0\right)$ are all odd, but $f\left(0, x_{0}, x_{1}, x_{2}\right)$ is even.

Here is a compact algebraic form that these monotone functions must take. We use the multinomial notation $x^{v}=x_{0}^{v_{0}} x_{1}^{v_{1}} \ldots x_{n-1}^{v_{n-1}}$.
Theorem 3.5. Let f be a monotone Boolean function whose least support vectors are given by $\Gamma \subset G F(2)^{n}$. Then

$$
\begin{equation*}
f(x)=1+\prod_{v \in \Gamma}\left(x^{v}+1\right) \tag{1.7}
\end{equation*}
$$

Proof. Define a Boolean function $g: G F(2)^{n} \rightarrow G F(2)$ such that

$$
g(x)=1+\prod_{v \in \Gamma}\left(x^{v}+1\right)
$$

where Γ is the set of least support vectors for a monotone Boolean function f.
For $x \in G F(2)^{n}$, define the subset S_{x} of least support vectors $v \in \Gamma$ such that $v \leq x$ as

$$
S_{x}=\{v \in \Gamma \mid v \leq x\}
$$

We will show $f=g$ by proving $f(x)=0 \Leftrightarrow g(x)=0$.
(\Rightarrow) Let $y \in G F(2)^{n}$ satisfy $f(y)=0$. Then, $y \notin \Omega_{f}$ and $S_{y}=\varnothing$. Thus, for every $v \in \Gamma$, there exists an i such that $v_{i}=1$ and $y_{i}=0$. Consequently, from the definition of g, we have

$$
g(y)=1+\prod_{v \in \Gamma}\left(y^{v}+1\right)=1+1=0 .
$$

(\Leftarrow) The converse is exactly the reverse of the above argument. We provide details for the convenience of the reader. Let $y \in G F(2)^{n}$ satisfy $g(y)=0$. Since $g(y)=1+\prod_{v \in \Gamma}\left(y^{v}+1\right)$, this means that for each $v \in \Gamma$, we have $y^{v}=0$. Thus, for every $v \in \Gamma$, there exists an i such that $v_{i}=1$ and $y_{i}=0$. This means that $y \geq v$ is false for each $v \in \Gamma$. Since f is monotone, this implies $y \notin \Omega_{f}$, which means that $f(y)=0$.

Recall that for a given Cayley graph X, the k th element λ_{k} of the spectrum of X is given by

$$
\begin{aligned}
\lambda_{k}=\left(H_{n} \vec{f}\right)(b(k)) & =\sum_{x \in \Omega_{f}}(-1)^{b(k) \cdot x} \\
& =\sum_{\substack{x \\
\exists v \in \Gamma \text { s.t. } v \leq x}}(-1)^{b(k) \cdot x} .
\end{aligned}
$$

If f is monotone, we want to characterize when $0 \in \operatorname{Spectrum}(X)$. The last expression for the elements of the spectrum of X may help answer the following question: For which monotone functions (if any) is the graph X singular? We can answer this question in some special cases. For example, the following result addresses the special case of atomic monotone functions.

Theorem 3.6. Let f be a Boolean atomic monotone function. The associated Cayley graph is singular if and only if ω is even.

Proof. First, note that if ω is odd then $(\mathcal{H} f)(y) \neq 0$ for all $y \in G F(2)^{n}$ for parity reasons. (This is true for all Boolean functions f and does not even require f to be monotone.) Therefore, we may assume ω is even.

We must show that, for some $x \in G F(2)^{n}$, half the vectors in Ω_{f} are orthogonal to x and half are not. Pick any $x \in \Omega_{f}$ such that $x \neq \mathbf{1}=(1,1, \ldots, 1)$. This is possible since we assumed ω is even. Then $\bar{x} \in \overline{\Omega_{f}}$ and $\bar{x} \neq(0,0, \ldots, 0)$. Since $\overline{\Omega_{f}}$ is a subspace, by the previous proposition, \bar{x} is orthogonal to exactly half the vectors in $\overline{\Omega_{f}}$. Thus, since ω is even, the same orthogonality property holds if we replace $\overline{\Omega_{f}}$ by Ω_{f}.

Recall that a strongly regular graph is a regular graph (V, E) with vertices V and common degree c for which there are also integers d and e such that:

- every two adjacent vertices have d common neighbors,
- every two non-adjacent vertices have e common neighbors.

If f is bent then the Cayley graph of f is strongly regular having parameters d, e with $d=e$, where d, e denote the number of common neighbors in the adjacent, non-adjacent cases [BCV01].

Proposition 3.7. Let $f: G F(2)^{n} \rightarrow G F(2), n>2$, denote a monotone function for which $\Omega_{f} \cap \overline{\Omega_{f}}=\varnothing$. Then f is not bent.

Proof. Suppose not. Let Γ denote the Cayley graph of f, so as noted above Γ is strongly regular having parameters d, e with $d=e$. For any vertex v in Γ, let $N(v)$ denote the neighbors (i.e., adjacent vertices) of v. Strongly regular implies that the cardinality

$$
|N(v) \cap N(0)|
$$

is independent of which vertex $v \in \Gamma$ we select. (Here 0 denotes the vertex $0 \in G F(2)^{n}$.) Let $v=\mathbf{1} \in \Omega_{f}$. Then

$$
|N(v) \cap N(0)|=\left|\overline{\Omega_{f}} \cap \Omega_{f}\right|=0 .
$$

This implies $d=e=0$, which is a contradiction (this equality, in turn, implies $\Omega_{f}=\varnothing$ by page 2 in Stanica [Sta07]).

Corollary 3.8. For $n>2$, if f is bent and monotone, then there is a $v \in \Omega_{f}$ satisfying $\mathrm{wt}(v) \leq n / 2$.
Let f be any even monotone function of 4 variables. By an exhaustive search using Sage, it can be verified that such an f has some Walsh-Hadamard transform value which is equal to 0 . In other words, its Cayley graph is singular in the sense that it has 0 as an eigenvalue. In particular, such a monotone function cannot be bent.

This suggests two questions:

- Is it true that for every even monotone function, the associated Cayley graph X is singular?
- Is it true that no monotone function in $n \geq 4$ variables is bent?

The answer to the first question is no. In fact, Example 4.2 below gives a counterexample in dimension 6 . The second question is, as far as we know, open.

4 New Boolean functions from old

We next discuss an interesting construction that led the third author to the counterexample mentioned above.

Let f be a monotone Boolean function on $G F(2)^{n}$. Let $\Gamma=\left\{v_{1}, \ldots, v_{r}\right\}$ be the least support of f. We derive a new Boolean function F on $G F(2)^{r}$ from f as follows. Let A_{i} be the atomic set generated by v_{i}, i.e., A_{i} consists of all vectors v in $G F(2)^{n}$ such that $v_{i} \leq v$. For $x \neq(0,0, \ldots, 0)$ in $G F(2)^{r}$, let D_{x} be the intersection of all A_{i} such that $x_{i}=1$. For example, if $x=(1,1,0, \ldots, 0)$, then $D_{x}=A_{1} \cap A_{2}$. If $x=(0,0, \ldots, 0), D_{x}$ is defined to be \varnothing. In fact, if A is atomic based on v and B is atomic based on w, then $A \cap B$ is atomic based on u, where the support of u is the union of the supports of v and w. Now we define $F(x)=0$ if $\left|D_{x}\right|$ is even and $F(x)=1$ if $\left|D_{x}\right|$ is odd.

Notice that $\left|D_{x}\right|$ is always a power of 2 or 0 , so $F(x)=1$ if and only if $\left|D_{x}\right|=1$, i.e., if and only if the set D_{x} consists of the vector of all 1's. If $\left|D_{x}\right|=1$ then $\left|D_{y}\right|=1$ for any $x \leq y$. Therefore the derived function F is also a monotone Boolean function. Note that F may be identically 0 , even though we have assumed that f is not.

We wonder if this construction of Boolean functions in $G F(2)^{r}$ has further implications in the theory of monotone Boolean functions.

Example 4.1. If F is the zero function then the adjacency matrix of f has 0 as an eigenvalue. To see this, we first note that each intersection of atomic sets is atomic (as a corollary of Proposition 3.3). Also, each atomic set with more than one element has an equal number of vectors of even and odd weights. For any set S of vectors in $G F(2)^{n}$, let S^{-}be the vectors in S with odd weight and let S^{+}be the set of vectors in S with even weight. Then $\left|D_{x}^{+}\right|=\left|D_{x}^{-}\right|$for all x if F is the zero function. The support of f is $\Omega_{f}=\cup_{i} A_{i}$. It is easily seen that

$$
\left|\bigcap_{i} A_{i}^{+}\right|=\left|\left(\bigcap_{i} A_{i}\right)^{+}\right|=\left|\left(\bigcap_{i} A_{i}\right)^{-}\right|=\left|\bigcap_{i} A_{i}^{-}\right| .
$$

Using the inclusion-exclusion principle for the cardinality of a union of sets,

$$
\begin{aligned}
\left|A_{1}^{+} \cup A_{2}^{+} \cup \ldots \cup A_{r}^{+}\right| & =\sum_{i=1}^{r}\left|A_{i}^{+}\right|-\sum_{i \neq j}\left|A_{i}^{+} \cap A_{j}^{+}\right| \\
& +\sum_{i, j, k \text { distinct }}\left|A_{i}^{+} \cap A_{j}^{+} \cap A_{k}^{+}\right|- \\
& \cdots+(-1)^{r-1}\left|A_{1}^{+} \cap A_{2}^{+} \cap \ldots \cap A_{r}^{+}\right| \\
& =\left|A_{1}^{-} \cup A_{2}^{-} \cup \ldots \cup A_{r}^{-}\right|
\end{aligned}
$$

so that the number of even and odd weight vectors in $\Omega_{f}=\cup_{i} A_{i}$ must be equal if F is the zero function. Note that the vectors in Ω_{f} which are orthogonal to $(1,1, \ldots, 1)$ are exactly the even weight vectors. Now we apply Lemma 2.3 with $m=0$ and $x=(1,1, \ldots, 1)$. This tells us that 0 belongs to the spectrum of the graph of f because the number of vectors in Ω_{f} which are orthogonal to $(1,1, \ldots, 1)$ is $\omega / 2$.

Note that this construction can be generalized to any finite collection of nonempty subsets A_{i} of $G F(2)^{n}$ by taking $F(x)=\left|\Omega_{f} \cap D_{x}\right| \bmod 2$, but the resulting Boolean function F is not necessarily
monotone. For example, if A_{i} consists of all vectors whose i th component is 0 , then the value of F on the i th standard basis vector e_{i} tells us whether the subfunction $\left.f\right|_{x_{i}=0}$ is even or odd.

Constructing a function $g: G F(2)^{n} \rightarrow \mathbb{Z}$ with $g(x)=\left|D_{x}\right|$ (i.e., the actual cardinality, not the cardinality mod 2) provides some useful counting arguments, as shown below, which can help rule out certain integers as eigenvalues of the spectrum of the Cayley graph of f.

Consider an atomic set A based on a vector v. If x is a vector in $G F(2)^{n}$ with support contained in the support of v, then $x \cdot y=x \cdot v$ for all $y \in A$. Otherwise, if the support of x is not contained in the support of v, x is orthogonal to exactly half the vectors in A. Using this fact we can construct, by some simple counting arguments, examples of monotone Boolean functions whose Cayley graphs cannot have 0 in their spectra.

For example, suppose that f is a monotone Boolean function on $G F(2)^{n}, n \geq 6$, such that the least support of f consists of vectors v_{1}, v_{2}, and v_{3} with $\left|A_{1}\right|=\left|A_{2}\right|=\left|A_{3}\right|=4$ and $\left|A_{i} \cap A_{j}\right|=1$ for $i \neq j$. Indeed, $A_{i} \cap A_{j}=\{\mathbf{1}\}$. Then $\left|\Omega_{f}\right|=10$. For any x in $G F(2)^{n}$, the number of vectors y in A_{i} such that $x \cdot y=x \cdot \mathbf{1}$ is either 2 or 4 . Therefore the total number of vectors y in $\Omega_{f}=A_{1} \cup A_{2} \cup A_{3}$ such that $x \cdot y=x \cdot 1$ is one of $4,6,8$, or 10 . This means that the number of vectors in Ω_{f} which are orthogonal to x cannot be $\omega / 2=5$ for any x in $G F(2)^{n}$. Therefore the Cayley graph of f cannot have 0 in its spectrum by Lemma 2.3.

We show now in Example 4.2 an explicit construction of an even, monotone Boolean function for which 0 is not an eigenvalue.

Example 4.2. Let $n=6$ and let f be the monotone function whose least support is

$$
\Gamma=\{(1,1,1,1,0,0),(1,1,0,0,1,1),(0,0,1,1,1,1)\} .
$$

Using Theorem 3.5, we obtain the compact algebraic form

$$
f\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=x_{0} x_{1} x_{2} x_{3}+x_{0} x_{1} x_{4} x_{5}+x_{2} x_{3} x_{4} x_{5} .
$$

This function is monotone yet has no vanishing Walsh-Hadamard transform values. As with the previous examples, we attach the file afsr.sage available from Celerier [Cel], then run the following commands.

Sage

```
sage: V = GF(2) ^(6)
sage: L = [V([1,1,0,0,1,1]),V([0,0,1,1,1,1]),V([1,1,1,1,0,0])]
sage: f = monotone_from_support(L)
sage: is_monotone(f)
True
```

These commands simply construct a Boolean function f whose least support are the vectors in L . Next, we compute the Walsh-Hadamard transform of this using both the method built into Sage's sage.crypto module, and the function in afsr.sage.

Sage

```
sage: f.walsh_hadamard_transform()
(-44, -12, -12, 12, -12, 4, 4, -4, -12, 4, 4, -4, 12, -4, -4, 4, -12, 4, 4, -4, 4, 4, 4, -4, 4,
    4, 4, -4, -4, -4, -4, 4, -12, 4, 4, -4, 4, 4, 4, -4, 4, 4, 4, -4, -4, -4, -4, 4, 12, -4,
    -4, 4, -4, -4, -4, 4, -4, -4, -4, 4, 4, 4, 4, -4)
sage: f.algebraic_normal_form()
```

```
x0*x1*x2*x3 + x0*x1*x4*x5 + x 2*x3*x4*x5
sage: x0,x1,x2,x3,x4,x5 = var("x0,x1,x2,x3,x4,x5")
sage: g = x0*x1*x2*x3 + x0*x1*x4*x5 + x 2*x3*x4*x5
sage: Omega = [v for v in V if g(x0=v[0], x1=v[1], x2=v[2], x3=v[3],
    x4=v[4], x5=v[5]) <>0]
sage: len(Omega)
10
sage: g = lambda x: x[0]*x[1]*x[2]*x[3] + x[0]*x[1]*x[4]*x[5] + x[2]*x[3]*x[4]*x[5]
sage: [walsh_transform(g,a) for a in V]
[44, 12, 12, -12, 12, -4, -4, 4, 12, -4, -4, 4, -12, 4, 4, -4, 12, -4, -4, 4, -4, -4, -4, 4, -4,
    -4, -4, 4, 4, 4, 4, -4, 12, -4, -4, 4, -4, -4, -4, 4, -4, -4, -4, 4, 4, 4, 4, -4, -12, 4,
    4, -4, 4, 4, 4, -4, 4, 4, 4, -4, -4, -4, -4, 4]
```

(Note: the Walsh transform method in the BooleanFunction class in Sage differs by a sign from the standard definition.) This verifies that there are no values of the Walsh-Hadamard transform which are 0 .

Acknowledgements: We thank the referees for helpful comments which improved the presentation of the paper. DP was supported by a research grant funded by the Naval Academy Research Council.

References

[BC99] A. Bernasconi and B. Codenotti, Spectral analysis of Boolean functions as a graph eigenvalue problem, Computers, IEEE Transactions on 48(3) (1999), 345-351.
[BCV01] A. Bernasconi, B. Codenotti and J. VanderKam, A characterization of bent functions in terms of strongly regular graphs, Computers, IEEE Transactions on 50(9) (2001), 984-985.
[BZ10] D. Bienstock and M. Zuckerberg, Solving LP relaxations of largescale precedence constrained problems, Integer Programming and Combinatorial Optimization 6080 (2010), 114.
[C06] C. Carlet, Boolean functions for cryptography and error correcting codes, In Y. Crama and P. L. Hammer, editors, Boolean Methods and Models, Cambridge University Press, 2006.
[Cel] C. Celerier, github repository, https://github.com/celerier/oslo/.
[HC00] D.S. Hochbaum and A. Chen, Performance analysis and best implementations of old and new algorithms for the open-pit mining problem, Operations Research 48(6) (2000), 894914.
[Joh68] T.B. Johnson, Optimum open pit mine production scheduling, Technical report, DTIC Document, 1968.
[Kle69] D. Kleitman, On Dedekinds problem: the number of monotone Boolean functions, Proc. Amer. Math. Soc. 21(3) (1969), 677682.
[Orl87] D. Orlin, Optimal weapons allocation against layered defenses, Naval Research Logistics (NRL) 34(5) (1987), 605617.
[Rhy70] J. M. W. Rhys, A selection problem of shared fixed costs and network flows, Management Science 17(3) (1970), 200207.
[Sta07] P. Stanica, Graph eigenvalues and Walsh spectrum of Boolean functions, Integers: Electronic Journal Of Combinatorial Number Theory 7(2) (2007), A32.

[^0]: ${ }^{1}$ Monotonicity is defined in $\S 3$ below.
 ${ }^{2}$ The ANF is discussed, for example, in [C06].

[^1]: ${ }^{3}$ An ideal in a set U is a collection I of subsets of U such that $B \in I$ and $A \subset B$ implies $A \in I$.

